	Reception	Year 1	Year 2	Year 3	Year 4	Year 5	Year 6
Number and Place Value	EYFS Curriculum (vocab section in this box) 3-4 year olds - Use a wider range of vocabulary. - Understand 'why' questions, like: "why do you think the caterpillar is so fat?" Reception - Learn new vocabulary. - Use new vocabulary throughout the day. Early Learning Goal - Participate in small group, class and one-to-one discussions, offering their own ideas, using recently introduced vocabulary.	National Curriculum. Pupils should be taught to: The principal focus of mathematics teaching in key stage 1 is to ensure that pupils develop confidence and mental fluency with whole numbers, counting and place value. This should involve working with numerals, words and the four operations, including with practical resources [for example, concrete objects and measuring tools]. By the end of year 2, pupils should know the number bonds to 20 and be precise in using and understanding place value. An emphasis on practice at this early stage will aid fluency		National Curriculum. Pupils should be taught to: The principal focus of mathematics teaching in lower key stage 2 is to ensure that pupils become increasingly fluent with whole numbers and the four operations, including number facts and the concept of place value. This should ensure that pupils develop efficient written and mental methods and perform calculations accurately with increasingly large whole numbers. By the end of year 4, pupils should have memorised their multiplication tables up to and including the 12 multiplication table and show precision and fluency in their work.		National Curriculum. Pupils should be taught to: The principal focus of mathematics teaching in upper key stage 2 is to ensure that pupils extend their understanding of the number system and place value to include larger integers. At this stage, pupils should develop their ability to solve a wider range of problems, including increasingly complex properties of numbers and arithmetic, and problems demanding efficient written and mental methods of calculation. By the end of year 6, pupils should be fluent in written methods for all four operations, including long multiplication and division	
	3-4 year olds -Recite numbers past 5. - Say one number name for each item in order: 1, 2, 3, 4, 5 . - Know that the last number reached when counting a small set of objects tells you how many there are in	Count to and across 100, forwards and backwards, beginning with 0 or 1, or from any given number count, read and write numbers to 100 in numerals; count in	count in steps of 2, 3, and 5 from 0 , and in tens from any number, forward and backward recognise the place value of each digit in a two-digit number (tens, ones)	Count from 0 in multiples of $4,8,50$ and 100 ; find 10 or 100 more or less than a given number Grecognise the place value of each digit in a three-digit number	Count in multiples of $6,7,9,25$ and 1000 find 1000 more or less than a given number count backwards through zero to	Read, write, order and compare numbers to at least 1000000 and determine the value of each digit count forwards or backwards in steps of powers of 10 for any	read, write, order and compare numbers up to 10 000000 and determine the value of each digit round any whole number to a required degree of accuracy

	its cardinal number value. -Link the number symbol (numeral) with its cardinal number value. - Compare numbers. - Understand the 'one more than/one less than' relationship between consecutive numbers. - Explore the composition of numbers to 10. Early Learning Goal -Participate in small group, class and one-to-one discussions, offering their own ideas, using recently introduced vocabulary -Verbally count beyond 20 , recognising the pattern of the counting system. - Subitise (recognising quantities without counting) up to 5 -Compare quantities up to 10 in different contexts, recognising when one quantity is greater than, less than or the same as the other quantity. -Have a deep understanding of numbers to 10 , including the composition of each number.					\|	

Addition and Subtraction	3-4 year olds Reception - Automatically recall number bonds for numbers 0-5 and some to 10 . Early Learning Goal - Automatically recall (without reference to rhymes, counting or other aids) number bonds up to 5 (including subtraction facts) and some number bonds to 10 , including double facts. - Explore and represent patterns within numbers up to 10 , including evens and odds, double facts and how quantities can be distributed evenly.	read, write and interpret mathematical statements involving addition (+), subtraction (-) and equals (=) signs represent and use number bonds and related subtraction facts within 20 add and subtract one-digit and twodigit numbers to 20 , including zero solve one-step problems that involve addition and subtraction, using concrete objects and pictorial representations, and missing number problems such as $7=$ -9.	solve problems with addition and subtraction: using concrete objects and pictorial representations, including those involving numbers, quantities and measures applying their increasing knowledge of mental and written methods recall and use addition and subtraction facts to 20 fluently, and derive and use related facts up to 100 add and subtract numbers using concrete objects, pictorial representations, and mentally, including: Ba two-digit number and ones Ba two-digit number and tens [8 two two-digit numbers	add and subtract numbers mentally, including: a three-digit number and ones - la three-digit number and tens - la three-digit number and hundreds add and subtract numbers with up to three digits, using formal written methods of columnar addition and subtraction estimate the answer to a calculation and use inverse operations to check answers solve problems, including missing number problems, using number facts, place value, and more complex addition and subtraction.	add and subtract numbers with up to 4 digits using the formal written methods of columnar addition and subtraction where appropriate estimate and use inverse operations to check answers to a calculation solve addition and subtraction two-step problems in contexts, deciding which operations and methods to use and why.	add and subtract whole numbers with more than 4 digits, including using formal written methods (columnar addition and subtraction) add and subtract numbers mentally with increasingly large numbers use rounding to check answers to calculations and determine, in the context of a problem, levels of accuracy solve addition and subtraction multi-step problems in contexts, deciding which operations and methods to use and why.	multiply multi-digit numbers up to 4 digits by a two-digit whole number using the formal written method of long multiplication divide numbers up to 4 digits by a twodigit whole number using the formal written method of long division, and interpret remainders as whole number remainders, fractions, or by rounding, as appropriate for the context divide numbers up to 4 digits by a twodigit number using the formal written method of short division where appropriate, interpreting remainders according to the context perform mental calculations, including with mixed operations and large numbers

			[adding three onedigit numbers show that addition of two numbers can be done in any order (commutative) and subtraction of one number from another cannot recognise and use the inverse relationship between addition and subtraction and use this to check calculations and solve missing number problems.				multiples and prime numbers use their knowledge of the order of operations to carry out calculations involving the four operations solve addition and subtraction multistep problems in contexts, deciding which operations and methods to use and why solve problems involving addition,
Multiplication and Division		solve one-step problems involving multiplication and division, by calculating the answer using concrete objects, pictorial representations and arrays with the support of the teacher.	recall and use multiplication and division facts for the 2,5 and 10 multiplication tables, including recognising odd and even numbers calculate mathematical statements for multiplication and division within the multiplication tables and write them using the multiplication (x), division (\div) and equals (=) signs show that multiplication of two numbers can be done in any order	Recall and use multiplication and division facts for the 3,4 and 8 multiplication tables write and calculate mathematical statements for multiplication and division using the multiplication tables that they know, including for twodigit numbers times one-digit numbers, using mental and progressing to formal written methods solve problems, including missing number problems, involving	recall multiplication and division facts for multiplication tables up to 12×12 use place value, known and derived facts to multiply and divide mentally, including: multiplying by 0 and 1 ; dividing by 1 ; multiplying together three numbers recognise and use factor pairs and commutativity in mental calculations multiply two-digit and three-digit numbers by a one-	identify multiples and factors, including finding all factor pairs of a number, and common factors of two numbers know and use the vocabulary of prime numbers, prime factors and composite (nonprime) numbers establish whether a number up to 100 is prime and recall prime numbers up to 19 multiply numbers up to 4 digits by a one- or two-digit number using a formal written method, including long	subtraction, multiplication and division use estimation to check answers to calculations and determine, in the context of a problem, an appropriate degree of accuracy.

			(commutative) and division of one number by another cannot solve problems involving multiplication and division, using materials, arrays, repeated addition, mental methods, and multiplication and division facts, including problems in contexts.	multiplication and division, including positive integer scaling problems and correspondence problems in which n objects are connected to m objects.	digit number using formal written layout solve problems involving multiplying and adding, including using the distributive law to multiply two digit numbers by one digit, integer scaling problems and harder correspondence problems such as n objects are connected to m objects.	multiplication for twodigit numbers multiply and divide numbers mentally drawing upon known facts divide numbers up to 4 digits by a one-digit number using the formal written method of short division and interpret remainders appropriately for the context multiply and divide whole numbers and those involving decimals by 10,100 and 1000 recognise and use square numbers and cube numbers, and the notation for squared solve problems involving multiplication and division including using their knowledge of factors and multiples, squares and cubes solve problems involving addition, subtraction, multiplication and division and a combination of these, including	

						understanding the meaning of the equals sign solve problems involving multiplication and division, including scaling by simple fractions and problems involving simple rates.	
Fractions	EYFS Curriculum			National Curriculum Pupils should be taug pupils should develop range of problems, in fractions and decimal	: At this stage, ir ability to solve a ing with simple ce value	National Curriculum Pupils should be taught to: pupils should be fluent in fractions, decimals and p develop the connections between multiplication a fractions, decimals, perce	By the end of year 6, orking with centages. Should at pupils make division with ages and ratio.
		recognise, find and name a half as one of two equal parts of an object, shape or quantity recognise, find and name a quarter as one of four equal parts of an object, shape or quantity.	Pupils should be taught to: recognise, find, name and write fractions $1 / 3,1 / 4,2 / 4$ and $3 / 4$ of a length, shape, set of objects or quantity write simple fractions for example, $1 / 2$ of $6=3$ and recognise the equivalence of $2 / 4$ and $1 / 2$.	count up and down in tenths; recognise that tenths arise from dividing an object into 10 equal parts and in dividing one-digit numbers or quantities by 10 recognise, find and write fractions of a discrete set of objects: unit fractions and nonunit fractions with small denominators recognise and use fractions as numbers: unit fractions and non-unit fractions with small denominators recognise and show, using diagrams, equivalent fractions	recognise and show, using diagrams, families of common equivalent fractions count up and down in hundredths; recognise that hundredths arise when dividing an object by one hundred and dividing tenths by ten. solve problems involving increasingly harder fractions to calculate quantities, and fractions to divide quantities, including non-unit fractions where the answer is a whole number	compare and order fractions whose denominators are all multiples of the same number identify, name and write equivalent fractions of a given fraction, represented visually, including tenths and hundredths recognise mixed numbers and improper fractions and convert from one form to the other and write mathematical statements > 1 as a mixed number [for example, $2 / 5+4 / 5=$ $6 / 5=11 / 5]$ add and subtract fractions with the same denominator and	use common factors to simplify fractions; use common multiples to express fractions in the same denomination compare and order fractions, including fractions >1 add and subtract fractions with different denominators and mixed numbers, using the concept of equivalent fractions multiply simple pairs of proper fractions, writing the answer in its simplest form [for example, $1 / 4 \times 1 / 2=$ 1/8]

						denominator 100, and as a decimal solve problems which require knowing percentage and decimal equivalents of $1 / 2,1 / 4,1 / 5,2 / 5,4 / 5$ and those fractions with a denominator of a multiple of 10 or 25 .	between simple fractions, decimals and percentages, including in different contexts.
Measurement	EYFS Curriculum	National Curriculum Pupils should be taugh also involve using a ran describe and compare such as length, mass, c and money.	to: Teaching should e of measures to ifferent quantities pacity/volume, time	National Curriculum Pupils should be taugh also ensure that pupils accuracy and develop so they can analyse sh properties, and confid relationships between that they can use mea accuracy and make co measure and number.	to: Teaching should draw with increasing athematical reasoning pes and their tly describe the hem. It should ensure ring instruments with nections between	National Curriculum Pupils should be taught to: geometry and measures extend knowledge devel	: Teaching in hould consolidate and ped in number
	3-4 year olds - Make comparisons between objects relating to size, length, weight and capacity. - Begin to describe a sequence of events, real or fictional, using words, such as 'first', 'then...' Reception - Compare length, weight and capacity. Early Learning Goal	compare, describe and solve practical problems for: lengths and heights [for example, long/short, longer/shorter, tall/short, double/half] mass/weight [for example, heavy/light, heavier than, lighter than] capacity and volume [for example, full/empty, more	choose and use appropriate standard units to estimate and measure length/height in any direction (m / cm); mass (kg/g); temperature (${ }^{\circ} \mathrm{C}$); capacity (litres/ml) to the nearest appropriate unit, using rulers, scales, thermometers and measuring vessels compare and order lengths, mass, volume/capacity and record the results using >, < and =	measure, compare, add and subtract: lengths ($\mathrm{m} / \mathrm{cm} / \mathrm{mm}$); mass (kg/g); volume/capacity ($1 / \mathrm{ml}$) measure the perimeter of simple 2-D shapes add and subtract amounts of money to give change, using both $£$ and p in practical contexts tell and write the time from an analogue clock,	Convert between different units of measure [for example, kilometre to metre; hour to minute] measure and calculate the perimeter of a rectilinear figure (including squares) in centimetres and metres find the area of rectilinear shapes by counting squares	convert between different units of metric measure (for example, kilometre and metre; centimetre and metre; centimetre and millimetre; gram and kilogram; litre and millilitre) understand and use approximate equivalences between metric units and common imperial units such as inches, pounds and pints measure and calculate the perimeter of composite rectilinear	solve problems involving the calculation and conversion of units of measure, using decimal notation up to three decimal places where appropriate use, read, write and convert between standard units, converting measurements of length, mass, volume and time from a smaller unit of measure to a larger unit, and vice versa,

		face to show these times.					
Geometry properties of shape	EYFS Curriculum	National Curriculum Pupils should be taught to: At this stage, pupils should develop their ability to recognise, describe, draw, compare and sort different shapes and use the related vocabulary.		National Curriculum Pupils should be taught to: Teaching should also ensure that pupils draw with increasing accuracy and develop mathematical reasoning so they can analyse shapes and their properties, and confidently describe the relationships between them. It should ensure that they can use measuring instruments with accuracy and make connections between measure and number.		National Curriculum Pupils should be taught to: geometry and measures extend knowledge devel Teaching should also ens shapes with increasingly properties and that they they need to describe the	: Teaching in hould consolidate and ed in number. re that pupils classify omplex geometric earn the vocabulary m.
	3-4 year olds -Talk about and explore 2D and 3D shapes (for example, circles, rectangles, triangles and cuboids) using informal and mathematical language: ‘sides', 'corners', 'straight', 'flat', 'round'. - Select shapes appropriately: flat surfaces for a building, a triangular pattern for a roof, etc. -Combine shapes to make new ones - an arch, a bigger triangle, etc. Reception -Select, rotate and manipulate shapes in order to develop spatial reasoning skills. -Compose and decompose shapes so that children can recognise a shape can have other shapes	recognise and name common 2-D and 3-D shapes, including: 2-D shapes [for example, rectangles (including squares), circles and triangles] 3-D shapes [for example, cuboids (including cubes), pyramids and spheres].	Pupils should be taught to: [3identify and describe the properties of 2-D shapes, including the number of sides and line symmetry in a vertical line identify and describe the properties of 3-D shapes, including the number of edges, vertices and faces identify 2-D shapes on the surface of 3-D shapes, [for example, a circle on a cylinder and a triangle on a pyramid] compare and sort common 2-D and 3-D shapes and everyday objects.	draw 2-D shapes and make 3-D shapes using modelling materials; recognise 3-D shapes in different orientations and describe them recognise angles as a property of shape or a description of a turn identify right angles, recognise that two right angles make a half-turn, three make three quarters of a turn and four a complete turn; identify whether angles are greater than or less than a right angle identify horizontal and vertical lines and pairs of	compare and classify geometric shapes, including quadrilaterals and triangles, based on their properties and sizes identify acute and obtuse angles and compare and order angles up to two right angles by size identify lines of symmetry in 2-D shapes presented in different orientations complete a simple symmetric figure with respect to a specific line of symmetry.	identify 3-D shapes, including cubes and other cuboids, from 2-D representations know angles are measured in degrees: estimate and compare acute, obtuse and reflex angles draw given angles, and measure them in degrees (o) identify: angles at a point and one whole turn (total 360 degrees), angles at a point on a straight line and $1 / 2$ a turn (total 180 degrees), other multiples of 90 degrees. use the properties of rectangles to deduce related facts and find	draw 2-D shapes using given dimensions and angles recognise, describe and build simple 3-D shapes, including making nets compare and classify geometric shapes based on their properties and sizes and find unknown angles in any triangles, quadrilaterals, and regular polygons illustrate and name parts of circles, including radius, diameter and circumference and know that the diameter is twice the radius

	within it, just as numbers can. Early Learning Goal			perpendicular and parallel lines.		missing lengths and angles distinguish between regular and irregular polygons based on reasoning about equal sides and angles. Identify, describe and represent the position of a shape following a reflection or translation, using the appropriate language, and know that the shape has not changed.	recognise angles where they meet at a point, are on a straight line, or are vertically opposite, and find missing angles.
Geometry position and direction	3-4 year olds -Understand position through words alone for example, "The bag is under the table," with no pointing. -Describe a familiar route. - Discuss routes and locations, using words like 'in front of' and 'behind' Reception - Continue, copy and create repeating patterns. - Draw information from a simple map. Early Learning Goal	describe position, direction and movement, including whole, half, quarter and three quarter turns.	order and arrange combinations of mathematical objects in patterns and sequences use mathematical vocabulary to describe position, direction and movement, including movement in a straight line and distinguishing between rotation as a turn and in terms of right angles for quarter, half and three-quarter turns (clockwise and anticlockwise).		describe positions on a 2-D grid as coordinates in the first quadrant describe movements between positions as translations of a given unit to the left/right and up/down plot specified points and draw sides to complete a given polygon.	identify, describe and represent the position of a shape following a reflection or translation, using the appropriate language, and know that the shape has not changed	describe positions on the full coordinate grid (all four quadrants) draw and translate simple shapes on the coordinate plane, and reflect them in the axes.

Statistics	3-4 year olds - Experiment with their own symbols and marks, as well as numerals.		interpret and construct simple pictograms, tally charts, block diagrams and simple tables ask and answer simple questions by counting the number of objects in each category and sorting the categories by quantity ask and answer questions about totalling and comparing categorical data.	interpret and present data using bar charts, pictograms and tables solve one-step and two-step questions [for example, 'How many more?' and 'How many fewer?’] using information presented in scaled bar charts and pictograms and tables.	interpret and present discrete and continuous data using appropriate graphical methods, including bar charts and time graphs. solve comparison, sum and difference problems using information presented in bar charts, pictograms, tables and other graphs.	solve comparison, sum and difference problems using information presented in a line graph complete, read and interpret information in tables, including timetables	interpret and construct pie charts and line graphs and use these to solve problems calculate and interpret the mean as an average.
Ratio and Proportion		N/A		N/A		National Curriculum Pupils should be taught connections that pupils multiplication and divisio decimals, percentages and foundation in arithmetic, to the language of algeb solving a variety of probl	Should develop the ake between with fractions, ratio. With this pupils are introduced as a means for ms.
							solve problems involving the relative sizes of two quantities where missing values can be found by using integer multiplication and division facts solve problems involving the calculation of percentages [for example, of

